CHEMISTRY STUDY MATERIALS FOR CLASS 12 (NCERT Based Reasoning of Chapter -07) GANESH KUMAR DATE:- 09/01/2021

<u>P – block elements</u>

Question 85: Explain the following:

(i) Nitrogen is much less reactive than phosphorus.

(ii) NF_3 is an exothermic compound but NCI_3 is an endothermic compound. Answer:

- (i) Due to presence of weak single bond in P P than N = N, phosphorous is more reactive than nitrogen and also because of high bond dissociation enthalpy of N = N.
- (ii) Due to smaller size of F as compared to CI, the N F bond is much stronger than N – CI bond while bond dissociation energy of F2 is much lower than that of Cl₂. Therefore, energy released during the formation of NF₃ molecule is more than the energy needed to break N₂ and F₂ molecules into individual atoms. In other words, formation of NF₃ is an exothermic reaction. The energy released during the formation of NCl₃ molecule is less than the energy needed to break N₂ and Cl₂ molecules into individual atoms. Thus formation of NCl₃ is an endothermic reaction.

Question 86: What happens when:

- (i) SO₂ gas is passed through an aqueous solution of Fe^{3+} salt?
- (ii) XeF₄ reacts with SbF₅?

Answer:

(i) In this sulphur dioxide acts as a reducing agent and reduces Fe^{3+} to Fe^{2+} .

 $2Fe^{3+} + SO_2 + 2H_2O \rightarrow 2Fe^{2+} + SO_4^{2-} + 4H^+$

(ii) $XeF_4 + SbF_5 \rightarrow [XeF_3]^+ [SbF_6]^-$

Question 88: What happens when:

- (i) Concentrated H₂SO₄ is added to calcium fluoride?
- (ii) SO₃ is passed through water?

Answer:

(i) Cone. H_2SO_4 reacts with CaF_2 giving Hydrogen Fluoride $CaF_2 + H_2SO_4 \rightarrow CaSO_4 + 2HF$ (ii) SO₃ passed in water giving Sulphuric Acid

 $SO_3 + H_2O \rightarrow H_2SO_4$

Question 89: Complete the following reactions:

(i) $NH_3 + 3CI_3 (excess) \rightarrow$ (ii) $XeF_6 + 2H_2O \rightarrow$

Answer:

(i) $NH_3 + Cl_2 \longrightarrow NCl_3 + 3HCl_3$ (Excess) Nitrogen trichloride (ii) $XeF_6 + 2H_2O \longrightarrow XeO_2F_2 + 4HF$

Question 90: What happens when H_3PO_3 is heated? Answer:

$$4H_3PO_3 \xrightarrow{Heat} 3H_3PO_4 + PH_3$$

Phosphorous acid Phosphoric acid Phosphine

Question 91.

(a) What is the covalence of nitrogen in N₂O₅?

(b) BiH₃ is a stronger reducing agent than SbH₃, why?

Answer:

(a) The covalency of nitrogen in N_2O_5 is 4 because each nitrogen atom has four shared pairs of electrons.

(b) BiH₃: Because it is a stronger reducing agent as its tendency to liberate H is maximum.

Question 92.

Account for the following:

(i) The two oxygen-oxygen bond lengths in ozone molecule are identical.

(ii) Most of the reactions of fluorine are exothermic.

Answer:

(i) Due to resonance the two oxygen atoms have partial double bond character and thus have same bond length i.e. 128 pm

(ii) Due to much higher electrode potential, high electro-negativity and low bond dissociation enthalpy of F_2 .

Question 93. Account for the following :

(i) Two S-O bond lengths in SO_2 are equal.

(ii) Fluorine shows only -1 oxidation state in its compounds.

Answer: (i) Due to resonance in SO₂ the double bond (π) electrons are distributed equally in both resonating structures as a result of which the bond length of two S-O becomes equal.

Because it is most electronegative element and does not have d-orbitals for octet expansion, therefore it shows only a negative oxidation state of -1.

Question 94. Account for the following:

(i) Bond angle is NH+4 is higher than that in NH_3 .

(ii) ICI is more reactive than I_2 .

Answer:

(i) Because in NH+4 ion there is no lone pair of electrons which is present in

 NH_3 due to which lone pair-bond pair repulsion occurs and bond angle decreases from 109°28' to 107.3°.

(ii) Because I-CI bond is weaker than I-1 bond as a result of which ICI breaks easily to form halogen atoms which readily bring about the reaction, hence more reactive.

Question 95.

"Orthophosphoric acid (H_3PO_4) is not a reducing agent whereas hypophosphorus acid (H_3PO_2) is a strong reducing agent." Explain and justify the above statement with the help of a suitable example.

Answer:

Orthophosphoric add (H_3PO_4) is not a reducing agent because it doesn't contain any P-H bond whereas hypophosphorus acid (H_3PO_2) is a strong reducing agent as it contains two P-H bonds. H_3PO_2 can reduce silver nitrate (AgNO₃) into metallic silver which H_3PO_4 can not.

 $4\text{AgNO}_3 + \text{H}_3\text{PO}_2 + 2\text{H}_2\text{O} \rightarrow 4\text{Ag} \downarrow + \text{H}_3\text{PO}_4 + 4\text{HNO}_3$

The p-Block Elements Class 12 Important Questions Short Answer Type -II [SA-II]

Question 96.

Account for the following :

(i) NH_3 is a stronger base than PH_3 .

(ii) Sulphur has a greater tendency for catenation than oxygen.

(iii) Bond dissociation energy of F_2 is less than that of CI_3 .

Answer:

(i) Since both P and N contain lone pairs of electrons but due to small size and high electronegativity of Nitrogen in NH_3 , the electron density is much higher than PH_3 , therefore it can easily donate electrons and acts as strong Lewis base than PH_3 .

(ii) The greater catenation tendency of sulphur is due to two reasons :

(a) The lone pair of electrons feels more repulsion in 0-0 bond than S-S bond due to its small size and thus S-S forms strong bond.

(b) As the size of atom increases down the group from O – PO, the strength of bond increases and therefore catenation tendency also increases.

(iii) Due to smaller size of F than CI as a result of which electron-electron repulsions between the lone pairs of electrons are very large than that of CI, hence bond dissociation energy of F_2 is less than that of Cl₂.

Question 97.

Explain the following situations :

(i) In the structure of HNO_3 molecule, the N-O bond (121 pm) is shorter than

N – OH bond (140 pm).

(ii) SF₄ is easily hydrolysed whereas SF₆ is not easily hydrolysed.

(iii) XeF_2 has a straight linear structure and not a bent angular structure.

Answer:

(i)

In the structure the bond length of N-O is shorter due to formation of coordinate bond and double bond while in N-OH the bond is single covalent due to which its bond length is greater than other N-O bond.

(ii) In SF₄, due to less steric hindrance by four F atoms, H₂O molecules can attack easily while in SF₆ tire S atom is completely protected by six F atoms and does not allow H₂O molecules to attack the S atom.

(iii) In XeF_2 there are 2 bond pairs and 3 lone pairs and thus show $sp^3 d$ hybridization. It has linear geometry.

Question 98.Explain the following observations :

(i) Fluorine does not exhibit any positive oxidation state.

(ii) The majority of known noble gas compounds are those of Xenon.

(iii) Phosphorus is much more reactive than nitrogen.

Answer:

(i) Because it is most electronegative element and does not have d-orbitals for octet expansion, therefore it shows only a negative oxidation state of -1.

(ii) Because xenon has least ionization energy among noble gases and hence it readily forms chemical compounds particularly with oxygen and fluorine.

(iii) Because P-P single bond is much weaker than N = N triple bond and the bond length of nitrogen is small and bond dissociation energy is very large which makes it inert and unreactive and thus phosphorus becomes more reactive.